By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Health Works CollectiveHealth Works CollectiveHealth Works Collective
  • Health
    • Mental Health
    Health
    Healthcare organizations are operating on slimmer profit margins than ever. One report in August showed that they are even lower than the beginning of the…
    Show More
    Top News
    improving patient experience
    6 Ways to Improve Patient Satisfaction Within Hospitals
    December 1, 2021
    degree for healthcare job
    What Are The Health Benefits Of Having A Degree?
    March 9, 2022
    custom software development is changing healthcare
    Digital Customer Journey Mapping and its Importance for Healthcare
    July 21, 2022
    Latest News
    Grounded Healing: A Natural Ally for Sustainable Healthcare Systems
    May 16, 2025
    Learn how to Renew your Medical Card in West Virginia
    May 16, 2025
    Choosing the Right Supplement Manufacturer for Your Brand
    May 1, 2025
    Engineering Temporary Hospitals for Extreme Weather
    April 24, 2025
  • Policy and Law
    • Global Healthcare
    • Medical Ethics
    Policy and Law
    Get the latest updates about Insurance policies and Laws in the Healthcare industry for different geographical locations.
    Show More
    Top News
    Can Thinking Younger Make You Live Longer?
    April 20, 2011
    Image
    Obesity’s Outlook Unchanged
    June 13, 2011
    When It’s An Emergency Elderly Not Treated As Well in Hospitals
    July 16, 2011
    Latest News
    Building Smarter Care Teams: Aligning Roles, Structure, and Clinical Expertise
    May 18, 2025
    The Critical Role of Healthcare in Personal Injury Recovery: A Comprehensive Guide for Victims
    May 14, 2025
    The Backbone of Successful Trials: Clinical Data Management
    April 28, 2025
    Advancing Your Healthcare Career through Education and Specialization
    April 16, 2025
  • Medical Innovations
  • News
  • Wellness
  • Tech
Search
© 2023 HealthWorks Collective. All Rights Reserved.
Reading: Nanomedicine Attacks Bacteria Where Antibiotics Cannot
Share
Notification Show More
Font ResizerAa
Health Works CollectiveHealth Works Collective
Font ResizerAa
Search
Follow US
  • About
  • Contact
  • Privacy
© 2023 HealthWorks Collective. All Rights Reserved.
Health Works Collective > Technology > Nanomedicine Attacks Bacteria Where Antibiotics Cannot
Technology

Nanomedicine Attacks Bacteria Where Antibiotics Cannot

HerinaAyot
Last updated: September 12, 2017 8:37 pm
HerinaAyot
Share
5 Min Read
SHARE

IBM and a research group in Singapore have engineered a new kind of synthetic, biodegradable nano particle that could be used to attack bacteria that have become resistant to antibiotics. The researchers believe that the nanomedicine breakthrough could eventually be used to fight infectious diseases better than antibiotics. If it works, the nanomedicine could save countless lives and protect people from illnesses that arise from bacterial infections, like staph. Using a trick from chip manufacturing, the researchers figured out how to isolate certain kinds of cells and attack them. That gets around the problem of many drugs today that kill off the good red blood cells at the same time that they eradicate bad cells. The researchers said the synthetic polymers they created can seek out bacteria cells and destroy their membrane walls. “It’s like a hammer,” said James Hedrick, advanced organic materials scientist at IBM’s Almaden research center in San Jose, Calif. “We target the membrane directly. The overall goal is to have a huge societal impact, with improved ways for drug and gene delivery.” Hedrick, who has worked at IBM for a couple of decades, said his team and another at the Institute of Bioengineering and Nanotechnology in Singapore brought in different approaches. IBM had done work on nanotechnology and semiconductor manufacturing while the Singapore institute worked the medicine. They created new types of polymers that could detect and destroy bacteria and infectious diseases like Methicillin-resistant Staphylococcus aureus, known as MRSA, or staph. Hedrick said the polymers can be built with a great deal of control from organic molecules, which makes them biodegradable. The nano particles are physically attracted to infected cells like a magnet, breaking their membrane walls without destroying healthy cells around them. These agents prevent the bacteria from developing drug resistance by breaking through the cell wall and membrane, a fundamentally different mode of attack compared to antibiotics. MRSA is a type of dangerous bacteria that is commonly found on the skin and easily contracted in places like gyms, schools and hospitals where people are in close contact. In 2005, MRSA was responsible for nearly 95,000 serious infections, and associated with almost 19,000 hospital stay-related deaths in the United States. Hedrick said that decades of learning about chip materials has helped the team, which has worked on the problem at least five years, to figure out how to craft nano structures that can be injected directly into the body or applied to the skin. The nanomedicine could, for instance, be put into anti-bacterial soap, deodorant, hand sanitizer or lotion. It could help heal wounds, tuberculosis, and lung infections. Our immune systems are designed to protect us from harmful substances, both inside and out, but conventional antibiotics are often rejected by the body or have a limited success rate in treating drug-resistant bacteria. But the new materials can work because they change themselves once they come into contact with water in the body or on its surface. The material self-assembles into a new polymer structure that is electrostatically attracted to the bacteria membranes. The polymers then break through the cell membranes, destroying the cell. The bacteria can’t adapt to this kind of physical attack. Fortunately, cells have a natural electric charge. The polymers are drawn only to infected areas. Other antimicrobial materials aren’t biodegradable, but these new materials are made of simple organic molecules. That means they can naturally exit the body, in contrast to other medicines that gather in the body and cause side effects. The lead collaborator at the Singapore group was Yiyan Yang. The new polymers were tested against clinical microbial samples at a medical hospital at Zhejiang University in China. Clinical trials and plenty of other work have to be done before the nanomedicine will be commercially available. “It’s still a work in progress and is in the early stages,” Hedrick said. “The results are extraordinarily promising at this stage.” Source

TAGGED:bacteriamedical technology
Share This Article
Facebook Copy Link Print
Share

Stay Connected

1.5kFollowersLike
4.5kFollowersFollow
2.8kFollowersPin
136kSubscribersSubscribe

Latest News

Clinical Expertise
Building Smarter Care Teams: Aligning Roles, Structure, and Clinical Expertise
Health care
May 18, 2025
Grounded Healing: A Natural Ally for Sustainable Healthcare Systems
Grounded Healing: A Natural Ally for Sustainable Healthcare Systems
Health
May 15, 2025
Learn how to Renew your Medical Card in West Virginia
Learn how to Renew your Medical Card in West Virginia
Health
May 15, 2025
Dr. Klaus Rentrop Shares Acute Myocardial Infarction heart treatment
Dr. Klaus Rentrop Shares Acute Myocardial Infarction
Cardiology
May 13, 2025

You Might also Like

The Future of Healthcare

November 5, 2015

How to Build Sustainable Models for HIE: Put the Citizen/Patient at the Center.

April 30, 2014

Del Mar Pharmaceuticals Is Fighting Cancer One Molecule At A Time

April 21, 2011

Invisiport Less Invasive Skin Port for Medication Delivery

October 23, 2011
Subscribe
Subscribe to our newsletter to get our newest articles instantly!
Follow US
© 2008-2025 HealthWorks Collective. All Rights Reserved.
  • About
  • Contact
  • Privacy
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?