By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Health Works CollectiveHealth Works CollectiveHealth Works Collective
  • Health
    • Mental Health
  • Policy and Law
    • Global Healthcare
    • Medical Ethics
  • Medical Innovations
  • News
  • Wellness
  • Tech
Search
© 2023 HealthWorks Collective. All Rights Reserved.
Reading: Seeking Holy Grail: Quest for Stem Cells from Embryos Continues
Share
Notification Show More
Font ResizerAa
Health Works CollectiveHealth Works Collective
Font ResizerAa
Search
Follow US
  • About
  • Contact
  • Privacy
© 2023 HealthWorks Collective. All Rights Reserved.
Health Works Collective > Technology > Medical Innovations > Seeking Holy Grail: Quest for Stem Cells from Embryos Continues
BusinessMedical InnovationsTechnology

Seeking Holy Grail: Quest for Stem Cells from Embryos Continues

Shane Climie
Shane Climie
Share
4 Min Read
SHARE

In a recent paper that spawned news articles and blogs worldwide, researchers announced the generation of human embryos that could produce stem cells. The announcement marks another step in the use of stem cells to treat a number of disorders, including diabetes, cancer, and neurodegenerative disease.

In a recent paper that spawned news articles and blogs worldwide, researchers announced the generation of human embryos that could produce stem cells. The announcement marks another step in the use of stem cells to treat a number of disorders, including diabetes, cancer, and neurodegenerative disease. But while this research, conducted by Dieter Egli, Scott Noggle, and their colleagues at the New York Stem Cell Foundation, holds much promise, it also demonstrates the daunting obstacles that block the path to stem cell therapy.

The biggest technical obstacle to stem cell therapy has been generating and isolating enough early-stage stem cells. It is these cells that have the greatest developmental potential because they can most readily differentiate into a mature cell that, in turn, could be used for cell therapy and regenerative medicine.

The discovery that adult cells could be “reprogrammed” into inducible pluripotent stem cells (iPSC) offered promises of stem cell therapy while sidestepping ethical issues arising from embryonic stem cell therapies. However, iPSCs presented technical issues that so far preclude their therapeutic potential. Bone marrow, cord blood, and adipose tissue also produce stem cells, but on an extremely limited basis.

More Read

Case Study: Improving “The Market” Slide in a Medical Presentation
Company Seeking Type 1 Diabetes Early Detection Tool
How to Develop Tweets That Will Get Consumers Chirping
Health Care Buzz Today
Moles: Simple Skin Issue or Something More?

So embryonic stem cells remain the “gold standard” (although iPSCs could still become the predominant technology). In their work, Egli and Noggle produced 13 embryos by transferring nuclei from the skin cells of diabetic patients into human eggs. These eggs surpassed previous attempts at human stem cell production; they could reach the 100-cell blastocyst stage (the earlier attempts never got past 10). What was the difference? The group transferred a diploid nucleus (from the somatic cell) into an oocyte that still had its haploid genome. Now, the cells could differentiate. But they did so with a triploid genome, a result that blocks their suitability for therapeutic use.

Some scientists feel this is an insurmountable obstacle. Others think that too many oocytes are needed to produce one viable stem-cell producing embryo (Egli and Noggin’s work needed 270 eggs to produce 13 embryos).

Clearly, cell therapy is becoming an important part of the pharmaceutical landscape, and the technical hurdles cleared by this research are impressive. But can the remaining issues be resolved? Can we ever get enough oocytes for therapeutic use? Will we ever be able to guide embryonic stem cell differentiation sufficiently to create every one of the  approximately 230 cell types that make up the human body? Or will advances in iPSC research surprise us (as they have in the past)? Share your thoughts with us – we’d love to hear them.

This post was originally published on the Popper and Co Blog.

TAGGED:Biotechnologyhuman embryosstem cell therapystem cells
Share This Article
Facebook Copy Link Print
Share

Stay Connected

1.5kFollowersLike
4.5kFollowersFollow
2.8kFollowersPin
136kSubscribersSubscribe

Latest News

a woman walking on the hallway
6 Easy Healthcare Ways to Sit Less and Move More Every Day
Health
September 9, 2025
Clinical Expertise
Healthcare at a Crossroads: Why Leadership Matters More Than Ever
Global Healthcare
September 9, 2025
travel nurse in north carolina
Balancing Speed and Scope: Choosing the Nursing Degree That Fits Your Goals
Nursing
September 1, 2025
intimacy
How to Keep Intimacy Comfortable as You Age
Relationship and Lifestyle Senior Care
September 1, 2025

You Might also Like

Strategic Planning
BusinesseHealthHealth ReformMedical RecordsTechnology

Top 5 Strategic Planning Challenges for CIOs

September 9, 2014
protect patient data
BusinessHospital Administration

Prioritizing Patient Privacy in Online Healthcare Communications

May 22, 2024
time to grow
BusinessFinanceHospital Administration

How to Grow Your Private Pay and Elective Care Business

June 15, 2015

How To Find a Job in Home Health Care, Elder Care, or Aging Using Social Media

July 12, 2012
Subscribe
Subscribe to our newsletter to get our newest articles instantly!
Follow US
© 2008-2025 HealthWorks Collective. All Rights Reserved.
  • About
  • Contact
  • Privacy
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?