Data Mining as an Essential Informatics Skill Set

November 30, 2012
61 Views

Clinical Integrated Data Repositories are now become common at academic medical centers. With tools like i2b2 and RemedyMD, plus a broad range of analytic tools, access to large volumes of clinical data for research and population management is coming to maturity. The opportunities for use of this data in enabling clinical trials and accelerating research are promising.

Clinical Integrated Data Repositories are now become common at academic medical centers. With tools like i2b2 and RemedyMD, plus a broad range of analytic tools, access to large volumes of clinical data for research and population management is coming to maturity. The opportunities for use of this data in enabling clinical trials and accelerating research are promising. Quality and patient safety can also be enhanced through use of electronic medical records; a recent New England Journal of Medicine article by Dean Sittig details how to “Use EHRs to Monitor and Improve Patient Safety.”  ”Organizations must leverage EHRs to facilitate rapid detection of common errors (including EHR-related errors), to monitor the occurrence of high-priority safety events, and to more reliably track trends over time.”

To maximize these opportunities, physicians and other health professionals must develop skills in understanding and utilizing this data. Medical informatics has been successful in developing tools for data mining, but translating raw data into research questions and disease trends requires training medical professionals in new ways of thinking. Understanding clinical workflow in an EMR does not directly translate into this type of research. One must understand how the data is organized and coded to create disease cohorts for analysis. Informaticists are key in training a new generation of physicians in this skill. Because of the complexity of this clinical data, there are three approaches to this data mining and analysis:

  1. Self-service data mining enabled by cohort definition tools, both vendor developed and open source
  2. Analyst provided data – skilled data analysts can pull relevant data sets based on their understanding of the research question and the data. However, there are limitations on the number of experienced data analyst any organization can afford to meet the coming demand
  3. Predictive analytics – this is the realm of the biostatistician who will be key consumers of large data sets to create predictive models to be used in clinical practice. This is also a limited resource, so prioritizing predictive modeling projects which major impact is key

Data mining and analytics should be taught in medical schools for the next generation of providers.  Data visualization will be helpful in exploring this complex, big data. More on this in a future post.

You may be interested

Can Natural Remedies Like RediCalm Decrease Stress and Anxiety?
Wellness
2 views
Wellness
2 views

Can Natural Remedies Like RediCalm Decrease Stress and Anxiety?

Ryan Kh - August 16, 2017

According to research from the National Institute of Mental Health, anxiety disorders are the most common mental illness in the…

How to Alleviate Stress Related Insomnia
Specialties
400 views
Specialties
400 views

How to Alleviate Stress Related Insomnia

JohnHenning - August 15, 2017

Do you have difficulty falling asleep or staying asleep every night? You aren't alone. According to multiple studies, including one…

4 Hormones That Play a Critical Role in Your Well being
Wellness
437 views
Wellness
437 views

4 Hormones That Play a Critical Role in Your Well being

Erica - August 15, 2017

Hormonal health and wellbeing have received plenty of attention lately, both from the medical community as well as from health-conscious…