By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Health Works CollectiveHealth Works CollectiveHealth Works Collective
  • Health
    • Mental Health
  • Policy and Law
    • Global Healthcare
    • Medical Ethics
  • Medical Innovations
  • News
  • Wellness
  • Tech
Search
© 2023 HealthWorks Collective. All Rights Reserved.
Reading: Sutures, Staples and Other Fading Technologies
Share
Notification Show More
Font ResizerAa
Health Works CollectiveHealth Works Collective
Font ResizerAa
Search
Follow US
  • About
  • Contact
  • Privacy
© 2023 HealthWorks Collective. All Rights Reserved.
Health Works Collective > Technology > Medical Innovations > Sutures, Staples and Other Fading Technologies
Medical Innovations

Sutures, Staples and Other Fading Technologies

PatrickDriscoll
PatrickDriscoll
Share
7 Min Read
SHARE

See Report #S192, “Worldwide Surgical Sealants, Glues, and Wound Closure Markets, 2013-2018”.

See Report #S192, “Worldwide Surgical Sealants, Glues, and Wound Closure Markets, 2013-2018”.

Sutures have been in use for potentially thousands of years, and staples for the last several decades. Both have frequently been the target of new development in wound closure and management, with competition in the form of advanced wound closure, whether surgical sealants, glues, hemostats, and even other mechanical wound closure. Novel wound closure technologies have decidedly gained enough credibility in clinical practice to displace volume in sutures and staples.

Sutures and Staples Are Not Fading…

More Read

Technological Breakthrough in Treatment of Sleep Apnea Offered at Leading Hospitals
New Concussion Sensors, Apps Help Without Solving Key Diagnostic Issues
The Future of Health: How Science Extends Our Lifespan
The PCMH and Home Care Data: An Interview with Melissa McCormack
Top 10 Medical Sales Items That are Saving Lives

Manufacturers of sutures and staples have not sat idly and watched their share erode. Indeed, the development of bioresorbable sutures and other novel suture types, the development of sophisticated stapling and suturing endoscopic instrumentation and other developments have begun to erode the share loss. Consequently, the shift “away” from sutures and staples has ebbed, such that the aggregate swing in market shares is no more than 3% compared to the swing projected three years ago of nearly 7% (see link).

Sutures and Staples in Wound Closure (excerpt from Report #S192)

The vast majority of sutures, staples, and endostaples are used to close procedures involving acute surgical wounds. Typically, chronic wounds do not involve the use of sutures and staple products unless some degree of surgical intervention is employed to remove necrotic tissue or to create a new acute wound bed to aid healing.

Sutures are classified as absorbable or non-absorbable; monofilament, multifilament or braided; and natural or synthetic. Absorbable or non-absorbable describes the suture’s effective life within tissue. Absorbable sutures lose the majority of their tensile strength within 60 days after use. Non-absorbable sutures are resistant to living tissue and do not break down. Monofilament, multifilament, and braided describe the structure or configuration of the suture based on the number of strands used to manufacture the product. Natural or synthetic refers to the origin of the suture. Natural suture materials include surgical gut, chromic gut, catgut and silk. Catgut is made from the natural collagen fibers found in the intestine of sheep, goats, cattle, hogs and horses. (It was never made from the gut of cats.) It is debatable whether catgut should continue to be used for suturing wounds, since cotton is cheaper and cotton or synthetic threads are less likely to cause infection. Synthetic suture materials include nylon, polyester, stainless steel, polypropylene, polyglycolic acid (PGA), polyglycolide-co-caprolactone (PGCL), and polydioxanone.

Suture products consist of two component parts, the needle and the suture. These can be found in a wide range of sizes and types, made of a range of materials, and the method of attachment of the suture to the needle can involve a variety of methods. Sutures are divided into braided and monofilament categories. Braided sutures are typically more pliable than monofilament and exhibit better knot security. Monofilament sutures are wirier and may require a more secure knot; however, they cause less tissue drag than braided sutures, a characteristic that is especially important in cardiovascular, ophthalmic and neurological surgery

Stapler devices are an evolution of suture technology. The goal of stapler products is to avoid infection and make the wound closure procedure easier and faster.  Staples are made of stainless steel and biomaterials and are used to join internal tissues, reconstruct or seal off organs, remove diseased tissue, occlude blood vessels, and close skin incisions and lacerations. They are primarily used during surgery as internal and/or external closure devices.

Staples are available in an assortment of sizes and features and stapler devices have been developed for specific procedures as well as for multiple uses.

Internal staplers are used to approximate (or close) internal tissues and organs. The devices may be reusable or disposable. Some disposable staplers may be reloaded several times during the course of a single patient surgical procedure, before being discarded.

The most recent internal staplers are used to perform minimally invasive surgical procedures. These allow the surgeon to endoscopically secure internal wounds instead of having to operate through an open procedure. Moreover, internal biodegradable staples obviate the need for staple removal. Such staples are ideally suited to laparoscopic surgery and are delivered via procedure-specific laparoscopic instruments. However, most staples are still made of stainless steel and when used for internal stapling procedures, whether open or laparoscopic, are not removed after healing. Skin staples are removed after the incision is healed.

Probably the major benefit of staples is that they can be applied more rapidly than sutures and can be placed precisely without requiring the skill necessary for suturing. This also means increased safety for the patient, and patients can often be discharged more rapidly if procedures are stapled rather than sutured.

While cosmetically acceptable results are usually obtained, staplers normally are not used in highly visible areas such as the face. Here, surgeons will still close by hand to minimize any scarring. In many skin closure procedures, sutures have begun to be replaced by cyanoacrylate glues. However, the ideal alternative to suturing has not yet been developed; for example, cyanoacrylate glues used for external skin closure are only one-fifth as strong as sutures.

TAGGED:medical technologystaplessutureswound management
Share This Article
Facebook Copy Link Print
Share
By PatrickDriscoll
Follow:
I serve the interests of medical technology company decision-makers, venture-capitalists, and others with interests in medtech producing worldwide analyses of medical technology markets for my audience of mostly medical technology companies (but also rapidly growing audience of biotech, VC, and other healthcare decision-makers). I have a small staff and go to my industry insiders (or find new ones as needed) to produce detailed, reality-grounded analyses of current and potential markets and opportunities. I am principally interested in those core clinical applications served by medical devices, which are expanding to include biomaterials, drug-device hybrids and other non-device technologies either competing head-on with devices or being integrated with devices in product development. The effort and pain of making every analysis global in scope is rewarded by my audience's loyalty, since in the vast majority of cases they too have global scope in their businesses.Specialties: Business analysis through syndicated reports, and select custom engagements, on medical technology applications and markets in general/abdominal/thoracic surgery, interventional cardiology, cardiothoracic surgery, patient monitoring/management, wound management, cell therapy, tissue engineering, gene therapy, nanotechnology, and others.

Stay Connected

1.5kFollowersLike
4.5kFollowersFollow
2.8kFollowersPin
136kSubscribersSubscribe

Latest News

Slips and falls can happen in the blink of an eye, often in spaces we believe to be safe. A brief moment of misstep
When a Simple Fall Becomes a Serious Health Concern
Health
November 1, 2025
How Setting Boundaries Helps Trauma Survivors Heal
Health
October 30, 2025
how to improve REM sleep
Unlock Better Sleep: How to Improve REM Sleep Naturally
Wellness
October 30, 2025
uv protection in winter
Winter Sun Safety: Why UV Protection Matters Year-Round
Health
October 29, 2025

You Might also Like

For Baby Boomers, a New Kind of Joint

June 9, 2011
Medical InnovationsTechnology

How Google is Pushing Healthcare Innovation

May 30, 2015
Screen Shot 2016-09-09 at 3.35.04 PM
BusinessHospital AdministrationMedical InnovationsTechnology

Marketing Automation, Oh My! Lessons from a Leading Health System

September 14, 2016

#SXSW 2013: Top 10 Healthcare Takeaways

March 15, 2013
Subscribe
Subscribe to our newsletter to get our newest articles instantly!
Follow US
© 2008-2025 HealthWorks Collective. All Rights Reserved.
  • About
  • Contact
  • Privacy
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?