By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Health Works CollectiveHealth Works CollectiveHealth Works Collective
  • Health
    • Mental Health
  • Policy and Law
    • Global Healthcare
    • Medical Ethics
  • Medical Innovations
  • News
  • Wellness
  • Tech
Search
© 2023 HealthWorks Collective. All Rights Reserved.
Reading: Estimating Lifetime or Episode-of-Illness Costs Under Censoring
Share
Notification Show More
Font ResizerAa
Health Works CollectiveHealth Works Collective
Font ResizerAa
Search
Follow US
  • About
  • Contact
  • Privacy
© 2023 HealthWorks Collective. All Rights Reserved.
Health Works Collective > Policy & Law > Public Health > Estimating Lifetime or Episode-of-Illness Costs Under Censoring
Public Health

Estimating Lifetime or Episode-of-Illness Costs Under Censoring

JasonShafrin
JasonShafrin
Share
5 Min Read
SHARE

How can you estimate an individual’s total lifetime cost of medical care? For people who die in your sample, this is simple. In most data sets, however, not all individuals will die during the period of observation. Thus, the data set is censored for those who do not die. In addition, many standard hazard models do not allow for researchers to disaggregate the effects of covariates on survival and the intensity of utilization. Both factors have an effect on cost. Assuming that censoring is random, Basu and Manning (2010) describe a method to calculate expected lifetime costs for each individual as follows:

  1. Estimate Survival Probabilities. Use a flexible survival model, such as an accelerated failure time model based on the generalized gamma distribution for time, to estimate the individual’s survival function after taking into account censoring. Let Sj(X) and hj(X) be the estimated survivor function and the hazard function for an interval indexed by j. The observation The predictions are obtained for all time periods for all patients.
  2. Estimate cost among patients who died. Among those subject intervals, (aj-1, aj], where we observe the subject to die, estimate a generalized linear model (or models if a two-part specification is necessary) for the observed costs after conditioning on covariates X. One can also condition on the time of death within the interval as well. Use parameter estimates from this model to predict costs, μ1j(X), for every subject-interval in the data. To account for the stochastic nature of U within that interval (i.e. to account for what would the costs be if the patient died inside that interval but at different times), one simply averages the predictions that are conditional of each value of U after weighting with the observed distribution of U among intervals where patients are observed to die. Therefore, μ1j(X)=∫μ1j(X,U) dF(U|abobsb+1).
  3. Estimate the cost among subjects not observed to die. Next, among those subject intervals, (aj-1, aj], where patients are not observed to die but excluding those where we only observe costs over a partial duration due to censoring, estimate a generalized linear model (or models if a two-part specification is necessary) for the observed cost functions after conditioning on covariates X. We use parameter estimates from this model to predict costs, μ2j(X), for every subject-interval in our data. We do not use the subject intervals where censoring occurs in our estimation in this part. This allows us effectively to allow for continuous censoring times.

  Thus, the resulting cost function for interval j for any individual is given by:

  • μj(X)=Sj(X)*[hj(X)*μ1j(X) + (1-hj(X))*μ2j(X)]

  There are a number of benefits of using this framework. First, Basu and Manning show that this estimator can “decompose the covariate effects on total costs into part mediated by survival effects and another mediated by intensity of use.” Second, this method allows for death to take place any time during each interval rather than solely at the end of an interval. Third, the model “allows for separate estimators to be used for end-of-life and non-end-of-life periods.” The separate estimators are especially useful in cases where end-of-life cost differs significantly from the regular course of care. For instance, one study demonstrated the there is a U-shaped pattern of cost history among cancer patients with the left side of the U corresponding to initial treatment and the right side reflecting a substantial spike in costs during the last 6 months of life. For those interested, Basu and Manning also provide a simulation and empirical application to demonstrate the utility of their econometric specification compared to earlier models.

TAGGED:medical costs
Share This Article
Facebook Copy Link Print
Share

Stay Connected

1.5kFollowersLike
4.5kFollowersFollow
2.8kFollowersPin
136kSubscribersSubscribe

Latest News

a woman walking on the hallway
6 Easy Healthcare Ways to Sit Less and Move More Every Day
Health
September 9, 2025
Clinical Expertise
Healthcare at a Crossroads: Why Leadership Matters More Than Ever
Global Healthcare
September 9, 2025
travel nurse in north carolina
Balancing Speed and Scope: Choosing the Nursing Degree That Fits Your Goals
Nursing
September 1, 2025
intimacy
How to Keep Intimacy Comfortable as You Age
Relationship and Lifestyle Senior Care
September 1, 2025

You Might also Like

Still Missing: Price Transparency in Healthcare

March 6, 2014
Siemens and Stand Up To Cancer
BusinessPublic HealthSpecialties

Passing Hope in the Form of a Baton

March 24, 2014

Healthyroads, Inc. Chooses Santech to Enhance Mobile Technologies for Total Health Improvement

December 13, 2011

Millennial Speak: Reaching the Next Generation of Healthcare Consumers

April 21, 2016
Subscribe
Subscribe to our newsletter to get our newest articles instantly!
Follow US
© 2008-2025 HealthWorks Collective. All Rights Reserved.
  • About
  • Contact
  • Privacy
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?