By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Health Works CollectiveHealth Works CollectiveHealth Works Collective
  • Health
    • Mental Health
    Health
    Healthcare organizations are operating on slimmer profit margins than ever. One report in August showed that they are even lower than the beginning of the…
    Show More
    Top News
    healthcare cybersecurity
    4 Helpful Tips on How to Protect Your Medical Practice Against Cyber Attacks
    October 24, 2021
    Health Check Diagnosis Medical Condition Analysis Concept
    6 Health Woes With Online Remedies
    January 19, 2022
    Eight Things Men Should Know About the Male Menopause
    Eight Things Men Should Know About the Male Menopause
    April 24, 2022
    Latest News
    Beyond Nutrition: Everyday Foods That Support Whole-Body Health
    June 15, 2025
    The Wide-Ranging Benefits of Magnesium Supplements
    June 11, 2025
    The Best Home Remedies for Migraines
    June 5, 2025
    The Hidden Impact Of Stress On Your Body’s Alignment And Balance
    May 22, 2025
  • Policy and Law
    • Global Healthcare
    • Medical Ethics
    Policy and Law
    Get the latest updates about Insurance policies and Laws in the Healthcare industry for different geographical locations.
    Show More
    Top News
    healthy nursing school habits
    Healthy Habits for Nursing Student Nursing School Students
    May 24, 2024
    High Deductables
    High-Deductible Insurance and Rising Bad Debt
    July 24, 2015
    How People Are Taking Advantage of Health Deals in the Recent Recession
    February 5, 2021
    Latest News
    Top HIPAA-Compliant Messaging Apps for Healthcare Teams
    June 25, 2025
    When Healthcare Ends, the Legal Process Begins: What Families Should Know About Probate and Medical Estates
    June 20, 2025
    Preventing Contamination In Healthcare Facilities Starts With Hygiene
    June 15, 2025
    Strengthening Healthcare Systems Through Clinical and Administrative Career Development
    June 13, 2025
  • Medical Innovations
  • News
  • Wellness
  • Tech
Search
© 2023 HealthWorks Collective. All Rights Reserved.
Reading: Estimating Lifetime or Episode-of-Illness Costs Under Censoring
Share
Notification Show More
Font ResizerAa
Health Works CollectiveHealth Works Collective
Font ResizerAa
Search
Follow US
  • About
  • Contact
  • Privacy
© 2023 HealthWorks Collective. All Rights Reserved.
Health Works Collective > Policy & Law > Public Health > Estimating Lifetime or Episode-of-Illness Costs Under Censoring
Public Health

Estimating Lifetime or Episode-of-Illness Costs Under Censoring

JasonShafrin
Last updated: August 23, 2017 1:30 pm
JasonShafrin
Share
5 Min Read
SHARE

How can you estimate an individual’s total lifetime cost of medical care? For people who die in your sample, this is simple. In most data sets, however, not all individuals will die during the period of observation. Thus, the data set is censored for those who do not die. In addition, many standard hazard models do not allow for researchers to disaggregate the effects of covariates on survival and the intensity of utilization. Both factors have an effect on cost. Assuming that censoring is random, Basu and Manning (2010) describe a method to calculate expected lifetime costs for each individual as follows:

  1. Estimate Survival Probabilities. Use a flexible survival model, such as an accelerated failure time model based on the generalized gamma distribution for time, to estimate the individual’s survival function after taking into account censoring. Let Sj(X) and hj(X) be the estimated survivor function and the hazard function for an interval indexed by j. The observation The predictions are obtained for all time periods for all patients.
  2. Estimate cost among patients who died. Among those subject intervals, (aj-1, aj], where we observe the subject to die, estimate a generalized linear model (or models if a two-part specification is necessary) for the observed costs after conditioning on covariates X. One can also condition on the time of death within the interval as well. Use parameter estimates from this model to predict costs, μ1j(X), for every subject-interval in the data. To account for the stochastic nature of U within that interval (i.e. to account for what would the costs be if the patient died inside that interval but at different times), one simply averages the predictions that are conditional of each value of U after weighting with the observed distribution of U among intervals where patients are observed to die. Therefore, μ1j(X)=∫μ1j(X,U) dF(U|abobsb+1).
  3. Estimate the cost among subjects not observed to die. Next, among those subject intervals, (aj-1, aj], where patients are not observed to die but excluding those where we only observe costs over a partial duration due to censoring, estimate a generalized linear model (or models if a two-part specification is necessary) for the observed cost functions after conditioning on covariates X. We use parameter estimates from this model to predict costs, μ2j(X), for every subject-interval in our data. We do not use the subject intervals where censoring occurs in our estimation in this part. This allows us effectively to allow for continuous censoring times.

  Thus, the resulting cost function for interval j for any individual is given by:

  • μj(X)=Sj(X)*[hj(X)*μ1j(X) + (1-hj(X))*μ2j(X)]

  There are a number of benefits of using this framework. First, Basu and Manning show that this estimator can “decompose the covariate effects on total costs into part mediated by survival effects and another mediated by intensity of use.” Second, this method allows for death to take place any time during each interval rather than solely at the end of an interval. Third, the model “allows for separate estimators to be used for end-of-life and non-end-of-life periods.” The separate estimators are especially useful in cases where end-of-life cost differs significantly from the regular course of care. For instance, one study demonstrated the there is a U-shaped pattern of cost history among cancer patients with the left side of the U corresponding to initial treatment and the right side reflecting a substantial spike in costs during the last 6 months of life. For those interested, Basu and Manning also provide a simulation and empirical application to demonstrate the utility of their econometric specification compared to earlier models.

TAGGED:medical costs
Share This Article
Facebook Copy Link Print
Share

Stay Connected

1.5kFollowersLike
4.5kFollowersFollow
2.8kFollowersPin
136kSubscribersSubscribe

Latest News

women dental care
What Is a Smile Makeover and How Much Does It Cost?
Dental health
June 30, 2025
HIPAA-Compliant Messaging Apps
Top HIPAA-Compliant Messaging Apps for Healthcare Teams
Global Healthcare Policy & Law Technology
June 25, 2025
recovering from injury
Rebuilding After Injury: Path to Physical and Emotional Recovery
News
June 22, 2025
scientist using microscope
When Healthcare Ends, the Legal Process Begins: What Families Should Know About Probate and Medical Estates
Global Healthcare
June 18, 2025

You Might also Like

Image
NewsPublic HealthSocial Media

5 CDC Social Media Activities That Influenced Online Conversations About Ebola

August 27, 2014

Q and A: Addressing an Enormous Public Health Problem with a Simple Technology Solution

January 15, 2014
Health ReformPolicy & LawPublic Health

Healthcare Patient Payment Liability Just Ain’t What it Used to Be

February 3, 2016

7 Best Blogs to Follow About Healthcare Legislation

June 2, 2014
Subscribe
Subscribe to our newsletter to get our newest articles instantly!
Follow US
© 2008-2025 HealthWorks Collective. All Rights Reserved.
  • About
  • Contact
  • Privacy
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?